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Abstract

The purpose of this paper is to account for informative sampling in fitting time series models, and
in particular an autoregressive model of order one, for longitudinal survey data. The idea behind the
proposed approach is to extract the model holding for the sample data as a function of the model
in the population and the first-order inclusion probabilities, and then fit the sample model using
maximum-likelihood, pseudo-maximum-likelihood and estimating equations methods. A new test
for sampling ignorability is proposed based on the Kullback–Leibler information measure. Also, we
investigate the issue of the sensitivity of the sample model to incorrect specification of the conditional
expectations of the sample inclusion probabilities. The simulation study carried out shows that the
sample-likelihood-based method produces better estimators than the pseudo-maximum-likelihood
method, and that sensitivity to departures from the assumed model is low. Also, we find that both
the conventional t-statistic and the Kullback–Leibler information statistic for testing of sampling
ignorability perform well under both informative and noninformative sampling designs.
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1. Introduction

Each year around the world statistical agencies and other organizations conduct thousands
of sample surveys to obtain information required for decision-making or policymaking.
Although many of the surveys are cross-sectional, there is increasing interest in longitudinal
surveys, for which similar measurements on the same variables or characteristics are made
on the same units at different points of time (occasions or waves). Each series of observations
for the same unit can be viewed as a time series, usually of short length. Analyzing the
measurements for all the sampled subjects permits the fitting of a low-order time series
models, despite the short lengths of the individual series. There are several reasons for the
increased prevalence of longitudinal surveys, which often have different objectives—see
for example Binder (1998), Binder and Hidiroglou (1988), Duncan and Kalton (1987), and
Smith (1978). In recent years, there has been a growing interest in analyzing data collected
from longitudinal surveys that use complex sampling designs, as is often the case in efficient
survey sampling. This interest reflects the expansion in requirements by policy makers and
social scientists for in-depth studies of social processes over time, rather than of one-time
“snap-shots” provided by cross-sectional analyses. Examples of longitudinal surveys, some
of which are based on complex sample designs, and of the issues involved in their design
and analysis can be found in Friedlander et al. (2002), Herriot and Kasprzyk (1984), and
Nathan (1999). In many of the cases described in these papers, samples are selected for the
first round and continue to serve for several rounds.

Most of the previous work in the area of the analysis of longitudinal data deals with it in
a nonsurvey context; see for example, Diggle et al. (1994), Lawless (2003), and Zeger et
al. (1988). In the survey context, see Feder et al. (2000) and Skinner and Holmes (2003).

Standard analysis of longitudinal survey data often fails to account for the complex nature
of the sampling design, such as the use of unequal selection probabilities, clustering, post-
stratification and other kinds of weighting used for the treatment of nonresponse. Thus it
does not incorporate all the design variables in the analysis model, either because there
may be too many of them or because they are not of substantive interest. However, if the
sampling design is informative, in the sense that the outcome variable is correlated with
design variables not included in the model, even after conditioning on the model covariates,
standard estimates of the model parameters can be severely biased, leading possibly to
false inference—see for example Pfeffermann (1993,1996), Hoem (1989), Fienberg (1989),
Kasprzyk et al. (1989), Skinner (1994) and Skinner et al. (1989).

It should be emphasized that standard inference may be biased even when the original
sample is a simple random sample, due to nonresponse, attrition and imperfect frames
that results in de facto a posterior differential inclusion probabilities. Special features of
longitudinal studies, such as late additions of individuals who join panel households, can
also lead to de facto unequal inclusion probabilities. In this paper we assume full response.
The problem of nonresponse, attrition or dropout in longitudinal surveys is discussed, for
instance, by Diggle and Kenward (1994), Pfeffermann and Nathan (2001) and Miller et al.
(2001).

The aim of this paper is to fit time series models and in particular an autoregressive
model of order one for longitudinal survey data, when the sampling design is informative.
In Section 2, we introduce the marginal distribution of longitudinal sample observations
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under informative sampling. Section 3 discusses the population and sample autoregressive
model of order one for longitudinal surveys under informative sampling. Section 4 presents
methods of estimation and variance estimation. Section 5 is devoted to testing sampling
ignorability and Section 6 presents the simulation study with discussion.

2. Sample distribution of longitudinal observations

Some recent work has considered the definition of the sample distribution under informa-
tive sampling for cross-sectional data. Sample survey data may be viewed as the outcome
of two processes: the process that generates the values of units in the finite population, often
referred to as the superpopulation model, and the process of selecting the sample units from
the finite population, known as the sample selection mechanism. Analytic inference from
repeated survey data refers to the superpopulation model. When the sample selection prob-
abilities depend on the values of the model response variable, even after conditioning on
auxiliary variables, the sampling mechanism becomes informative and the selection effects
need to be accounted for in the inference process.

Pfeffermann et al. (1998) propose a general method of inference on the population (model)
distribution under informative sampling that consists of approximating the parametric dis-
tribution of the sample measurements for given population distributions and first-order
sample selection probabilities. The sample distribution is defined as the distribution of the
sample measurements, given these measurements are sampled. Under informative sampling,
this distribution is different from the corresponding population distribution. In this section,
we extend these results to study the case of longitudinal panel sample observations under
informative sampling.

Consider a finite population, U, of size N, assumed to remain constant over time. The
individuals of U are potentially measured repeatedly over time. Let yit be the value of the
response variable y, attached to the individual i at time t, (t = 1, . . . , T ; i = 1, . . . , N).
These values are assumed to be related to the previous values {yit ′ , t

′ = 1, . . . , t − 1} of
the same individual under some correlation structure. Let yi = (yi1, . . . , yiT )′ be the vector
of T responses on the ith individual, i = 1, . . . , N . Assume that the values y1, . . . , yN are
independent realizations with pdf fp(yi |�), which depends on the parameter �. Since the
elements of yi are dependent measurements on a single subject that constitute a time series,
the population pdf of yi can be written as

fp(yi |�) = fp(yi1|�)

T∏
t=2

fp(yit |Hit−1; �) = fp(yi1|�)fp(yi2, . . . , yiT |yi1; �), (1)

where Hit−1 denotes the set of measurements on the ith individual up to and including
yit−1.

In what follows, let z={z1, . . . , zN } be the values of a known design variable employed for
the sample selection process and consider the inclusion probabilities �i =Pr(i ∈ s|yi , zi )=
Pr(Ii = 1|yi , zi ) as realizations of random variables with conditional probability density
function fp(�i |yi, �), i=1, . . . , N , where Ii =1 if unit i is in the sample and Ii =0 otherwise.
We consider the case where the sample is a panel sample selected at time t = 1 and all units
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remain in the sample till time t = T . Then it is intuitively reasonable to assume that the
first-order inclusion probabilities depend on the population values of the response variable
at the first occasion only, the values yi1, and the values of the design variable used for the
sample selection, but not included in the working model under consideration. Then we have
the following results.

Lemma 1 (Sample distribution of longitudinal observations). Let fp(yi |�) be the popula-
tion distribution of yi .

1. The sample distribution of yi is given by

fs(yi |�, �) = Ep(�i |yi; �)

Ep(�i |�, �)
fp(yi |�). (2)

2. If we assume that �i depends only on yi1 and zi , then the sample distribution of yi is
given by

fs(yi |�, �) = fs(yi1|�, �)

T∏
t=2

fp(yit |Hit−1; �), (3)

where

fs(yi1|�, �) = Ep(�i |yi1; �)

Ep(�i |�, �)
fp(yi1|�)

is the sample distribution of yi1.

Proof. Application of Eq. (3.4) of Pfeffermann et al. (1998).
Comment 1: Note that Ep(�i |yi ) = Ezi |yi

Ep(�i |yi , zi ), so that zi is integrated out in (2).
Comment 2: Note that the sample and the population distribution of longitudinal obser-

vations are, in general different. In particular, in (3) the difference between the population
and sample distributions is due to the difference in the distribution of yi1 only. The product
term in (3) does not change. This is because the selected sample is a panel sample selected
at time t = 1 and all units remain in the sample till time t = T .

Comment 3:According to (3), we can see that, for a given population distribution, the sam-
ple distribution is completely determined by the specification of the population conditional
expectations of sample inclusion probabilities, Ep(�i |yi1; �).

Pfeffermann et al. (1998) introduced two alternative approximation models for this pop-
ulation conditional expectation; see also Skinner (1994):

(a) Exponential inclusion probability model:

Ep(�i |yi1; a0, a1) = exp(a0 + a1yi1). (4)

In this case, we can show that the sample distribution of yi is given by

fs(yi |�, a1) = exp(a1yi1)fp(yi1|�)

Mp(a1, �)

T∏
t=2

fp(yit |Hit−1; �), (5)
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where a0 and a1 are informativeness parameters to be estimated from the sample and
Mp(a1, �)=Ep[exp(a1yi1)] is the moment generating function of the population distribution
of yi1.

(b) Linear inclusion probability model:

Ep(�i |yi1; b0, b1) = (b0 + b1yi1). (6)

In this case the sample distribution of yi is given by

fs(yi |�, b0, b1) = (b0 + b1yi1)fp(yi1|�)

[b0 + b1Ep(yi1)]
T∏

t=2

fp(yit |Hit−1; �), (7)

where b0 and b1 are informativeness parameters to be estimated from the sample.
Pfeffermann et al. (1998) proved that, under certain regularity conditions and for the ma-

jority of sampling schemes that are used in practice, such as probability proportional to size
with or without replacement, successive sampling, rejective sampling, and Rao–Sampford’s
method; if s consists of n distinct units and if the population measurements are independent,
then as N → ∞ (with n fixed) the sample responses are asymptotically independent. Thus,
we can apply standard inference procedures to complex survey data by using the marginal
sample distribution for each unit in the sample.

3. Autoregressive model of order one for longitudinal survey data under
informative sampling

3.1. Population model

Let the observed measurements, yit , be a realization of random variables which follow
the first-order autoregressive (AR) model; that is

yit − � = �(yit−1 − �) + �it , i = 1, . . . , N, t = 1, . . . , T , (8)

where the errors {�it } are independent and normally distributed, with zero mean and variance
�2, and |�| < 1. Since �it ∼

p
N(0, �2) and yit |Hit−1 ∼

p
N{�(yit−1 − �) + �, �2}, then the

population pdf of the ith response yi = (yi1, . . . , yiT )′ is

fp(yi ) = fp(yi1)(2��2)[(T −1)/2] exp

{
− 1

2�2

T∑
t=2

[yit − � − �(yit−1 − �)]2

}
. (9)

If yi1 is regarded as fixed in repeated realizations, then fp(yi1) can be dropped because it
does not affect the inference, in such cases there is no problem of informativeness. However,
when yi1, i = 1, . . . , N are considered as random variables, then, under the stationarity
condition of AR (1), it follows that, yi1 ∼

p
N(�, �2/[1 − �2]).
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According to this interpretation the population pdf of yi is

fp(yi ) = c(�2, �) exp

(
− 1

2�2

[
(1 − �2)(yi1 − �)2

+
T∑

t=2

{(yit − �) − �(yit−1 − �)}2

])
, (10)

where c(�2, �) = (2��2)−T/2(1 − �2)1/2.

3.2. Sample distribution under the AR (1) model

(a) Exponential inclusion probability model: Ep(�i |yi1) = exp(a0 + a1yi1): According
to (5) we can show that, under this model, the sample log-likelihood function is given by

le(�, �, �2, a1) = − nT

2
log(�2) + n

2
log(1 − �2)

− 1 − �2

2�2

∑
i∈s

(
yi1 − � − a1�2

1 − �2

)2

+
∑
i∈s

[
− 1

2�2

T∑
t=2

{yit − � − �(yit−1 − �)}2

]
. (11)

Thus the sample pdf belongs to the same family as the population pdf but differs only in
the mean of the first variable yi1. The sample pdf of yi1 is also normal but the mean � in the
population pdf changes to �+ (a1�2/1 −�2), for the sample distribution. The contribution
of the component

∏T
t=2 fp(yit |Hit−1) does not change.

(b) Linear inclusion probability model:Ep(�i |yi1)=b0+b1yi1: Under this approximation,
using (7), the sample log-likelihood function is

ll(�, �, �2, b0, b1) = − n log(b0 + b1�) − nT

2
log(�2)

+ n

2
log(1 − �2) − 1 − �2

2�2

∑
i∈s

(yi1 − �)2

+
∑
i∈s

[
− 1

2�2

T∑
t=2

{yit − � − �(yit−1 − �)}2

]
. (12)

4. Estimation

In this section, we extend the methods of estimation for cross-sectional survey data to
longitudinal survey data, in particular the method based on the sample distribution function
(Pfeffermann et al., 1998; Sverchkov and Pfeffermann, 1999; Pfeffermann and Sverchkov,
2003) and the pseudo-maximum-likelihood method (Binder, 1983; Skinner, 1989).
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4.1. Two-step estimation

In our case the parameter on which the population pdf depends is �=(�, �, �2), whereas
the parameters on which the sample pdf depends are � and a1, see Eq. (11) or �, b0 and
b1, see Eq. (12). Thus the parameters of the sample distribution include the parameters
of the population distribution. Hence, the parameters of the population distribution can be
estimated using the sample distribution, for instance, by the following two-step method.
As pointed out by Pfeffermann et al. (1998), the use of this two-step procedure becomes
necessary when the conditional expectation of the first-order sample selection probabilities
is exponential, since in this case there is a problem of identifiability.

In practice, the conditional expectations of the sample inclusion probabilities, Ep(�i |yi1),
are not known and usually the only data available to the analyst for the first time period are
{yi1, wi; i ∈ s}, where wi = 1/�i are the sample weights. The estimation of Ep(�i |yi1),
using only the sample data can be based on the following relationship, due to Pfeffermann
and Sverchkov (1999)

Es(wi |yi1) = 1

Ep(�i |yi1)
. (13)

The prominent feature of this relationship is that the expectation of the population con-
ditional sample inclusion probabilities can be identified and estimated from the sample
data.

Thus for the exponential inclusion probability model, two-step estimation proceeds as
follows:

Step 1: Estimation of a0 and a1: According to (13) we estimate a0 and a1 by regressing
− log(wi) against yi1, i ∈ s.

Step 2: Substituting the ordinary least-squares estimator, ã1 of a1 in the sample log-
likelihood (11), estimates of the remaining parameters are obtained by differentiating the
sample log-likelihood, le(�, �, �2, ã1), with respect to each of the components of � =
(�, �, �2). The resulting equations are not linear in the parameters, so a numerical solution
is needed to compute the ML estimates.

For the linear inclusion probability model given in (6), we first estimate the informative-
ness parameters using (13), by regressing 1/wi against yi1, i ∈ s, and then substituting
the resulting estimates, b̃0 and b̃1 in (12). The ML estimators of the parameters, �, can be
obtained by differentiating the resulting sample log-likelihood function, ll(�, �, �2, b̃0, b̃1),

with respect to each of the components of � = (�, �, �2).

4.2. Pseudo-likelihood approach

The census maximum-likelihood estimator of � solves the census likelihood equations,
which in our case are

U(�) =
N∑

i=1

�

��

{
− T

2
log(�2) + 1

2
log(1 − �2) − 1

2�2 (yi1 − �)2(1 − �2)

}

− 1

2�2

N∑
i=1

T∑
t=2

�

��
{(yit − �) − �(yit−1 − �)}2 = 0. (14)
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The pseudo-maximal-likelihood (PML) estimator is defined as the solution of Û (�) = 0
where Û (�) is a sample estimator of the census log-likelihood, U(�). See Binder (1983).

We consider two possibilities for Û (�)

Ûw(�) =
∑
i∈s

wi

�

��

{
−T

2
log(�2) + 1

2
log(1 − �2) − 1

2�2 (yi1 − �)2(1 − �2)

}

− 1

2�2

∑
i∈s

T∑
t=2

wi

�

��
{(yit − �) − �(yit−1 − �)}2, (15)

or

Ûws(�) =
∑
i∈s

wi

�

��

{
−T

2
log(�2) + 1

2
log(1 − �2) − 1

2�2 (yi1 − �)2(1 − �2)

}

− 1

2�2

∑
i∈s

T∑
t=2

N

n

�

��
{(yit − �) − �(yit−1 − �)}2. (16)

The basic idea behind the use of self-weighting in (16) for the time periods t �2 is that: for
longitudinal survey data under informative sampling, the model holding for the sample units
in the first occasion is different from the model holding in the population for that time period,
but the conditional distribution for the remaining time periods does not change. Strictly
speaking, this is no longer a pseudo-likelihood estimator and is similar to the estimating
equation approach based on relationships between sample and population distributions
suggested in Pfeffermann and Sverchkov (2003). The estimators are obtained by solving
the equations derived from (15) or (16). The log-likelihood equations again are not linear
in the parameters, so a numerical optimization is needed to compute the estimates.

Ifyi1 is regarded as fixed, the probability-weighted estimator is the solution of the equation

�l̂c(�)

��
= �

��

{
− n(T − 1)

2
log(2��2)

− 1

2�2

∑
i∈s

T∑
t=2

wi[(yit − �) − �(yit−1 − �)]2

}
= 0. (17)

4.3. Variance estimation

For the variance estimation of �̂, we consider the use of the inverse of the Fisher in-
formation matrix, following Pfeffermann and Sverchkov (1999, 2003). We first consider
estimating the conditional variance of �̂=(�̂, �̂, �̂2

), given that the informativeness parame-
ters a1, b0 and b1 are held fixed at their estimated values. The conditional Fisher information
matrix evaluated at �̂ = (�̂, �̂, �̂2

) is given by

V̂sample(�̂) = [Isample(�̂)]−1 =
{
−1

n

[
�2l(�)

��′��

]∣∣∣∣
�=�̂

}−1

. (18)
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For instance, under the linear inclusion probability model; the entries of Isample(�) are given
by

�2ll

��2 = − n

�2

[
(T − 1)(1 − �)2 + (1 − �2) − b̃2

1�
2

b̃0 + b̃1�

]
,

�2ll

����
= − 1

�2

∑
i∈s

{
Y ∗

i + (1 − �)

T∑
t=2

(yit−1 − �) + 2�(yi1 − �)

}
,

�2ll

��2��
= − 1

�4

∑
i∈s

{Y ∗
i (1 − �) + (1 − �2)(yi1 − �)},

�2ll

��2 =− 1

�2

∑
i∈s

[
T∑

t=2

(yit−1 − �)2 + �2 1 + �2

(1 − �2)2
− (yi1 − �)2

]
,

�2ll

��2��
= − 1

�4

∑
i∈s

{
T∑

t=2

[(yit − �) − �(yit−1 − �)](yit−1 − �) + �(yi1 − �)2

}
,

�2ll

��4 =− 1

�4

∑
i∈s

{
−T

2
+ 1

�2

T∑
t=2

[(yit −�)−�(yit−1 −�)]2 + 1−�2

�2 (yi1 −�)2

}
,

where

Y ∗
i =

T∑
t=2

[(yit − �) − �(yit−1 − �)].

Similar results are obtained under the exponential inclusion probability model.
In order to estimate the unconditional variance the unconditional sample likelihoods must

be used—see Eqs. (11) and (12). For the linear case the parameters are identifiable, so that
the MLE of �, �, �2, b0, b1 can be obtained directly without using the two-step method
and explicit expressions for the Fisher information matrix are available. For the exponential
case explicit expressions are not available, since the parameters are not identifiable.

For such cases, an alternative to the Fisher information method is the bootstrap approach
for variance estimation. This is well founded under informative sampling, since under the
majority of sampling schemes used in practice the sample measurements are asymptotically
independent with respect to the sample distribution. Let �̂ = (�̂, �̂, �̂2

) be the sample ML
of � = (�, �, �2) based on Eqs. (11) or (12) and �̂b = (�̂b, �̂b, �̂

2
b) be the ML estimator

computed from the bootstrap sample b = 1, . . . , B, with the same sample size, drawn by
simple random sampling with replacement from the original sample—the sample drawn
under informative sampling design. The bootstrap variance estimator of �̂ = (�̂, �̂, �̂2

) is
defined as

V̂boot(�̂) = 1

B

B∑
b=1

(�̂b − ¯̂�boot)(�̂b − ¯̂�boot)
′, where ¯̂�boot = 1

B

B∑
b

�̂b.
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As pointed by Pfeffermann and Sverchkov (2003), a possible advantage of the use of the
bootstrap variance estimator in the present context is that it accounts for all sources of
variation, including that due to the estimation of the unknown informativeness parameters,
so that it estimates the unconditional variance.

5. Testing for sampling ignorability

A natural question arising for informative sampling is how to test if the sampling design
can be ignored for the inference process, given the available design information. Under the
assumptions of Section 2, it is easy to verify that fs(yi |�, �)=fp(yi |�), that is the sampling
design is ignorable (noninformative), if and only if

fs(yi1|�, �) = fp(yi1|�). (19)

5.1. Conventional correlation t-statistic

Condition (19) allows us to use the t-correlation test for testing sampling ignorability;
see Pfeffermann and Sverchkov (1999). If we have no auxiliary variables, then we can show
that the test of sampling ignorability is equivalent to testing the set of hypotheses:

H0k = Corrs(y
k
i1, wi) = 0, k = 1, 2, . . . , (20)

where Corrs is the correlation under the sample distribution.
The conventional t-statistic can be used to test this set of hypotheses. This test requires

that the all moments of the distribution exist.

5.2. Kullback–Leibler information test

A new test for sampling ignorability we propose is based on the Kullback–Leibler (K–L)
information measure; see Kullback (1978). For instance, under the exponential inclusion
probability model, the condition (19) implies that the test of sampling ignorability is equiv-
alent to testing the null hypothesis

H0 : fp(yi1|�) = fs(yi1|�, a1) or a1 = 0, (21a)

against the alternative hypothesis

H1 : fp(yi1|�) �= fs(yi1|�, a1) or a1 �= 0. (21b)

We can show that the minimum discrimination information (for a single observation) from
the sample log-likelihood given by (11) is

I (fs : fp) = Es

[
log

fs(yi1|�, a1)

fp(yi1|�)

]
= a1

2

(
a1�2

1 − �2

)
. (22)

Note that I (fs : fp) is a product of a1/2 and the amount of change in the location parameter,
and is equal zero if and only if fs(yi1) = fp(yi1), that is, if a1 = 0.



3062 A.A.H. Eideh, G. Nathan / Journal of Statistical Planning and Inference 136 (2006) 3052–3069

Now let s denote the random sample y11, . . . , yn1 of n independent and identically dis-
tributed observations. Then the estimate of the minimum discrimination information given
in (22) is

Î (fs : fp) = Î (H1 : H0) = n
ã2

1 �̂2

2(1 − �̂
2
)

, (23)

where ã1 and �̂ are the appropriate estimators of a1 and �, respectively. Asymptotically,
under certain regularity conditions and under the null hypothesis H0, 2Î (H1 : H0) given in
(23) has an asymptotic chi-square distribution with one degree of freedom, see Kullback
(1978, Section 5.5). Thus, asymptotically

Pr(2Î (H1 : H0)��2
2	,1) = 	. (24)

In developing our maximum-likelihood estimators and the K–L information test for ignor-
ability of sampling design for the AR (1) model, we have derived the estimators and the test
of informativeness assuming a correctly specified model. In practice, one is often obliged to
specify the model at the same time that one is constructing the estimates and the information
test. A number of criteria have been suggested for use in model selection. For discussions
of model evaluation and selection in time series analysis, see Fuller (1996, pp. 438–439)
and Harvey (1993, pp. 73–80). However in our case, the sample-likelihood functions given
in (11) and (12) are different from the classical likelihood function, where selection bias is
absent. As mentioned before, since the ML estimators defined by (11) and (12) are only for
the population parameter � = (�, �, �2), with the estimates of the informativeness param-
eters a1, b0 and b1 held fixed at their estimated values, then well-known methods can be
applied. In particular we can use the AIC criterion introduced by Akaike (1973), defined by

AIC = −2l(�̂) + 2k = −2l(�̂, �̂, �̂2
) + 2k,

where l(�̂) = l(�̂, �̂, �̂2
) is the sample log-likelihood given by (11) or (12) and k is the

dimension of �, which is equal to 3 in our case. We can fit several alternative models and
choose the one with the smallest AIC.

6. Simulation study with discussion

In order to assess the performance of the estimators obtained using parametric and pseudo-
likelihood methods and compare them with the classical estimators obtained under simple
random sampling, we designed and executed a simulation study.

6.1. Generation of population values

The population values were generated in 3 steps:
Step 1: We generated independently univariate normal values of yi1 at the first time period

(t = 1) from: y1 ∼ N(�, �2/(1 − �2)), where � = 2, � = 0.8 and � = 0.5.
Step 2: We generated independently the population values of the random error term from:

�it ∼ N{0, (0.5)2}, i = 1, . . . , 5000; t = 1, . . . , T with T = 3 and 10.
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Step 3: The population values for the time periods t = 2, 3, . . . , T were generated using
the AR (1) model as follows: yit = 2 + 0.8(yit−1 − 2) + �it , i = 1, . . . , 5000.

6.2. Sample selection

Samples of size n=500 were selected by probability proportional to size (PPS) systematic
sampling, with the size variable, zi , defined in three different ways:

I—Exponential sampling: zi(e) = exp(0.5 + 0.2yi1 + ui), ui ∼ U(0, 1).
II—Linear sampling: zi(l) = 4 + 5yi1 + ui, ui ∼ U(0, 25).
III—Ignorable sampling: zi(ig) = exp(ui), ui ∼ U(0, 4).

Under exponential and linear sampling the sampling design is informative, while under
ignorable sampling the sampling design is noninformative.

The first-order inclusion probabilities and the sampling weights were defined, respec-
tively, by

�i (j) = [nzi(j)]
/

N∑
i=1

zi(j) and wi(j) = 1/�i (j), j = e, l, or ig

After generating the population values and specifying the sampling design, the population
was simulated R = 500 times for two periods of length T = 3, 10 (results for T = 10
are not given, for lack of space) and for each simulated population three samples were
independently drawn using PPS(e), PPS(l) and PPS(ig). Data from these samples were
then used to estimate the informativeness parameters and then the population parameters
using the different methods described in Section 4.

6.3. The estimators compared

The parameters estimated in our study are the mean �, the autocorrelation �, and the
variance �2. We consider six different estimators, four of them based on the assumption that
yi1 is a random variable and the remaining two estimators based on the assumption that yi1
is fixed. These estimators are described as follows:

UWML—Unweighted (exact) maximum likelihood (ML) for the case where the sampling
design is ignorable—solutions to (14) with N replaced by n.

WSML—Weighted ML for t = 1 and self-weighted for t �2. The estimator obtained by
using (16).

PWML—Probability weighted estimator or pseudo-ML (15).
SMLE—The estimator obtained by maximizing the resulting sample log-likelihood func-

tion given by (11), based on the exponential inclusion probability model.
SMLL—The estimator obtained by maximizing the resulting sample log-likelihood given

by (12), based on the linear inclusion probability model.
CUWML—Unweighted (exact) conditional ML obtained by solving (17) with wi = 1

(yi1 regarded as fixed).
CWML—Weighted conditional ML obtained by solving (17) (yi1 regarded as fixed).
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Comment: The likelihood functions are maximized using the nlminb function within
S-Plus (Statistical Sciences, 1990).

The relative bias of 
̂ is estimated by

RB(
̂) = MSE(
̂)



= 1




{
1

500

500∑
i=1

(
̂i − 
)2

}

and the relative root-mean-square error of 
̂ is estimated by

RRMSE(
̂) = sqrt[MSE(
̂)]



= 1




[
1

500

500∑
i=1

(
̂i − 
)2

]0.5

.

6.4. Sensitivity analysis

An important aspect of the use of the sample model for statistical inference is its sensitivity
to wrong specification of the conditional expectation of the first-order sample inclusion
probabilities, Ep(�i |yi1, �).

To investigate this issue we assume that sample selection is based on the exponential
sampling or on the linear sampling and then apply first the correct model and then the
incorrect model for estimation. The results obtained are compared under the correct and
incorrect models.

6.5. Results

The results of the simulation study are summarized in Table 1 as averages over the 500
samples selected under the three sampling schemes—the exponential, linear and ignorable
(noninformative) sampling schemes and contains the results of the sensitivity analysis.

The main findings from Table 1 are as follows:

1. The unweighted ML estimators of the population mean, �, have higher relative biases
and relative root-mean-square errors for both of the informative sampling schemes—
exponential and linear. These relative biases and relative root-mean-square errors are
reduced substantially by the other estimation methods, WSML, PWML, SMLL and
SMLE, under both the two informative sampling schemes.

2. The relative biases and relative root-mean-square errors of the estimators of all three pa-
rameters behave approximately the same under the four methods of estimation, WSML,
PWML, SMLL and SMLE, and for the two informative sampling schemes, while under
the ignorable case the SMLL and SMLE are more efficient than WSML and PWML.

3. The smallest relative bias occurs under the sample distribution method of estimation
when the sampling design is exponential while under linear sampling this occurs for �
and �2 in most of the cases. Also the WSML and PWML have smallest biases for � when
the sampling is linear.
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Table 1
Relative biases (RB—italics) and relative root-mean-square error (RRMSE—bold) of estimators under five esti-
mation methods (T = 3 time periods)

True model Estimation method

Parameter UWML WSML PWML SMLE SMLL

Exponential � 0.0573 0.0013 0.0008 −0.0009 −0.0032
0.0600 0.0184 0.0185 0.0184 0.0188

� −0.0002 −0.0018 −0.0013 0.0054 0.0050
0.0157 0.0157 0.0161 0.0165 0.0165

�2 0.0035 −0.0076 −0.0081 −0.0055 −0.0011
0.0422 0.0428 0.0453 0.0423 0.0423

Linear � 0.0537 0.0020 0.0016 0.0056 0.0084
0.0562 0.0182 0.0184 0.0185 0.0174

� −0.0063 −0.0046 −0.0039 −0.0012 −0.0033
0.0185 0.0179 0.0185 0.0175 0.0177

�2 −0.0004 0.0008 −0.0016 −0.0019 0.0010
0.0407 0.0411 0.0451 0.0406 0.0408

Ignorable � 0.0020 0.0031 0.0033 0.0035 0.0008
0.0174 0.0296 0.0308 0.0222 0.0237

� −0.0034 −0.0033 −0.0042 −0.0031 −0.0031
0.0165 0.0215 0.0277 0.0164 0.0163

�2 −0.0036 −0.0044 −0.0044 −0.0037 −0.0034
0.0404 0.0426 0.0754 0.0405 0.0405

4. The relative root-mean-square error of the UWML estimator of � has the largest value,
while the relative root-mean-square error of the PWML estimators of � and �2 have the
largest value, under the two informative sampling schemes in most of the cases.

5. When the sampling design is ignorable, the behaviour of the UWML, SMLL and SMLE
methods of estimation is similar, in the sense that their RB’s and RRMSE’s have approx-
imately the same values. The interpretation of this is that, when the sampling design is
ignorable the sample and population models are the same. Also the WSML is better than
PWML, because the RB and RRMSE of the estimators obtained using WSML are less
than the corresponding PWML. Since we are not sure whether the design is ignorable,
it is safer to use the model-based estimators, based on the sample distribution.

6. If the sampling scheme is linear or exponential we can apply the exponential model in
order to estimate the parameters of the population model and incur only small losses.

From the above, we conclude that there is a loss in efficiency by using the unweighted method
of estimation when the sample data has been drawn using an informative sampling scheme
provided that the models are identified correctly. Also we see that, under the two sampling
schemes—linear and exponential, there is no one method for dealing with informative
sampling that stands out. In addition to this, if the assumed models are correct, when the
sampling design is ignorable there is a considerable loss of efficiency if WSML or PWML
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Table 2
RRMSE of estimators under two estimation methods

Parameter CUWML- CWML- CUWML- CWML- CUWML- CWML-
exponential exponential linear linear ignorable ignorable

� 0.0428 0.0444 0.0409 0.0439 0.0429 0.0733
� 0.0234 0.0247 0.0175 0.0256 0.0244 0.0426
�2 0.0467 0.0494 0.0442 0.0483 0.0450 0.0837

First time response variable treated fixed (T = 3 time periods).

estimation methods are applied, while there is no considerable loss of efficiency if SMLL
and SMLE are applied. This is because under the ignorable sampling scheme the sample
and population distributions coincide. Also one can see that SMLE and SMLL are very
robust with respect to model assumptions and in fact there is no real difference between
them.

Table 2 contains the RRMSE of estimators under three estimation methods when the first
time response variable is treated as fixed.

The results of Table 2 show that when the outcome of the first time period is treated
as fixed, the CUWML and CWML estimators have small biases. Also the (conditional)
RRMSE of the CWML estimators is larger than that of the CUWML estimators. Here
we compare weighted and unweighted estimators, even though we do not need to weight,
because when the response variable for the first time period is treated as fixed, then there is
no problem of informativeness and the conditional sample and population distributions are
the same.

Moreover, from the comparison of Tables 1 and 2, we see that the CUWML estima-
tors have higher RRMSE than SMLL and SMLE for both of the informative sampling
schemes—exponential and linear—and also for the noninformative case. This is because
the latter make use of the first observation and by conditioning on the outcome of the first
time period we loose some information. Thus the RRMSE of the SMLE estimator of �
is more than twice that of CWML, where the first observation is not used, so that large
gains are achieved for the estimator of �, by using the first observation. For the parameter
� the gains are more modest (an RRMSE 0.0165 for SMLE and 0.0247 for CWML, under
exponential sampling) and for the parameter �2 the gains are small. However, by taking into
account the first observation through informative sampling methods we achieve significant
gains, especially for the mean � but also for the autoregressive parameter �.

From a comparison of results for T = 3 (above) to those for T = 10 (not given here
for lack of space) we find that the relative biases and relative root-mean-square errors of
the estimators of �, � and �2 decrease as the number of time periods increases, under all
three sampling schemes. This is because the sample size increases over time. Also the
effect of informativeness decreases as the length of the overall time period increases. The
interpretation of this phenomenon is that since the sample is a panel sample selected at
the first time period and all units remain in the sample till the last time period, the change
in the superpopulation parameters happens only for the response variable at the first time
period. Therefore as time increases the effect of the sample distribution at the first time
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Table 3
Average values (AV) and standard deviations (SD) of K–L information statistic for testing sampling ignorability
(T = 3 time period)

Sample model Exponential Linear Ignorable

AV SD AV SD AV SD

T = 3 14.07 2.45 10.28 1.89 0.74 1.05

period decreases. This is because as time increases the sum of the likelihood functions for
t �2 dominates the sum of the likelihood function for t = 1. Thus as the number of time
points T increases the RRMSE of the estimators will converge to the same value. So the
estimators SMLL and SMLE can have an advantage only when T is small.

6.6. Tests of informativeness

Values of the conventional t-statistic for testing the slope of the regression of wi on yk
i1

is equal to zero were generated by the cor.test function within S-Plus (Statistical Sciences,
1990). The average values of the correlation t-test statistic for k = 1, 2, 3 and T = 3, 10,
(not given here for lack of space) show that, under both the two informative sampling
schemes—exponential and linear—the sampling design is highly significant, that is infor-
mative. However, under an ignorable sampling design the value of the t-statistic is very
small so that the test is not significant, as it should be. The proportion of significant results
as obtained for the correlation test statistics under the exponential, linear and ignorable
sampling designs was calculated for five critical values 	 = 0.15, 0.10, 0.05, 0.025, 0.01
of the corresponding distribution of the test statistic under the null hypothesis, which is
approximately normal. The results showed that the proportions of significant results under
exponential and linear sampling designs are very close to one and are close to the nominal
significance levels for the ignorable design, so that the correlation test for testing sampling
ignorability performs well.

Table 3 shows the average values and standard deviations of the K–L information statistic
given by (26) under informative and noninformative sampling designs and under the true
(exponential) and under the wrong model (linear) of sample inclusion probabilities. Here
the critical value is 3.84.

From this table we conclude that the results are statistically significant under informative
sampling design, when in fact the data are simulated using informative sampling designs.

Similarly, the proportion of significant results as obtained for the K–L information test
statistics under the exponential, linear and ignorable sampling designs, (not given here for
lack of space), was calculated for five critical values of the corresponding distribution of the
test statistic under the null hypothesis, which is chi-square with one degree of freedom. The
results show that the K–L information test statistic for testing sampling ignorability performs
well both under informative sampling designs and under ignorable sampling design. Thus,
the proportion of significant results is close to one under informative sampling design and
small (and in most cases less than the nominal levels) under an ignorable sampling design.



3068 A.A.H. Eideh, G. Nathan / Journal of Statistical Planning and Inference 136 (2006) 3052–3069

Also the K–L information statistics is not very sensitive to wrong assumptions about the
conditional expectation of sample selection probabilities.
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